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Abstract. The angular distribution of the phonon emission from a heated two- 
dimensional electron gap in a strong magnetic field is studied. It is shown that for 
processes involving inter-Landau lev$ transitions a simple dewupling approximation 
is suffident in treating the disorder; intra-Landau level processes are, however, seen 
to require more careful treatment and an analysis using the self-consistent Bom 
approximation is pi-. 

1. Introduction 

Recent experiments [l] have used imaging techniques to study the angular distribution 
of phonons emitted by a twmdimensional electron gas (ZDEG) which is heated relative 
to the lattice in which it is embedded by the passage of an electric current. The zDEG 
gains energy from the applied field at a rate uL(Te)E2 where E is the applied field and 
nL(Te) is the dissipative part of the conductivity a t  temperature T,. It is assumed 
that the electronic system rapidly equilibrates via the electron-electron (Coulomb) 
interaction in order that the effective electron temperature be meaningful. The ZDEG 
loses energy by emitting phonons, the rate of emission into the mode with polarization 
s and wavevector Q being T;'(Q; Te, T,) where is the lattice temperature. Neglect- 
ing the warming of the lattice, the steady state electron temperature is determined by 
the condition 

u ~ ( T ) E ~  = ~ J , ( Q ) T ; ~ ( Q ; T , , T ) .  (1.1) 
S,Q 

In silicon phonons travel ballistically for frequencies less than about lTHz, the 
critical frequency for isotope scattering to become relevant, until they reach the crystal 
surface; the imaging technique [l] assumes that the local temperature of a surface 
element dS(8,4) is proportional to the thermal flux incident on it, hence measurement 
of the temperature variation across the bottom of a sample provides a map of the 
angular distribution of the heat flux. Because of the elastic anisotropy of the lattice 
the energy current due to a phonon is not, in general, parallel to its wavevector: 
energy transport is directed along the group velocity of the phonon mode, i.e. along a 
normal to the surface of constant frequency in reciprocal space. Because the constant 
frequency surface for silicon is far from spherical, having regions which are concave, the 
phenomena of phonon focusing occurs [2] in which the energy flux is concentrated along 
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the symmetry directions of the lattice. This effect can be seen [l] by injecting phonons 
isotropically (in Q space) from a 3D metal heater on the top surface of a silicon device 
with no zDEG and imaging the energy flux on the bottom surface. Hence the effects 
of phonon focusing can, in principle, he deconvolved from the angular dependence 
of the emission from a 2DEG leaving the (angular) distribution of wavevectors of the 
emitted phonons which contains information on the electronic states. In all of the 
following we shall be attempting to calculate this Q-space distribution, the effects of 
phonon focusing will be neglected although they are required for direct comparison 
with experiment. 

A very interesting case arises when the zDEG is subject to a strong perpendicular 
magnetic field. Uchimura and Uemura [3] calculated the total emission in this case 
using the self-consistent Born approximation but only considered intra-Landau level 
processes. Toombs et a i  [4] have calculated the angular distribution of phonon emission 
in this case, assuming sharp Landau levels in the 2DEG. The macroscopic degeneracy of 
the states ensures that only phonons with integer multiples of the ,yc;otron frequency 
(cyclotron phonons) can be emitted, corresponding to inter-Landau level electronic 
transitions. In real devices the states are modified from this ideal case by the presence 
of disorder in the form of randomly placed ionized impurities and fluctuating potentials 
due to surface imperfections. The disorder broadens the Landau levels into hands and 
modifies the nature of the eigenstates, most of which become Anderson localized. The 
level broadening allows a range of phonon frequencies around each cyclotron harmonic 
as well as very low energy phonons due to intra-Landau level transitions. 

It is not possible to treat the case of a disordered zDEG exactly, so this paper 
presents calculations of the angular distribution of emitted phonons from a disordered 
2DEG in a strong magnetic field in a sequence of three approximations. Firstly neglect- 
ing the disorder altogether which recovers the results of [4] in the present notation, 
secondly in a simple decoupling approximation which assumes an arbitrary form for 
the density of states of a Landau band but entirely neglects the correlations between 
the initial and final electronic states involved in a transition and finally using the 
self-consistent Born approximation (SCBA) of Ando et al [5] which treats twc-particle 
correlations in a mean-field-like manner and shows true quantum diffusion; this ap- 
proximation is exact in the limit of large Landau level index [6]. 

The SCBA is believed to provide an good description of the physics of the disordered 
zDEG in a strong magnetic field on length scales of the order of the elastic scattering 
length, at longer length scales weak localization corrections begin to appear, while the 
macroscopic physics is described by the fixed points of the renormalization group flows 
which start from the values given by the SCBA [7]. In physical systems the scaling 
is cut off at the inelastic scattering length, this is relatively short at the electronic 
temperatures under discussion here and so the SCBA results should not be significantly 
renormalized and should he a sensible approximation for this problem. 

The remainder of this paper is arranged as follows. In section 2 a simplified model 
of the experimental system is described which is the basis of subsequent calculations. 
Section 3 contains a derivation of the phonon emission rate and the angular distri- 
bution function in terms of the twc-particle spectral function of the 2DEG. Section 4 
contains the calculation of the distribution function in the absence of disorder, section 
5 calculates it using the decoupling approximation while section 6 gives a derivation 
from the SCBA for Gaussian white-noise disorder, following [6]. Section 7 contains r+ 
sults from all three approximations for the case of emission from a silicon [loo] 2DEG 
in the isotropic Dehye approximation and section 8 is a brief summary. 
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2. The model system 

In this section the simplified model of the experimental system will be described. A 
zDEG of area fi is embedded in an elastic medium of volume V .  Directions in the 
medium are related to the normal to the zDEG via angles 0,d. The electronic motion 
is described by the single particle effective mass Hamiltonian (r and p are ZD vectors 
in the z = 0 plane) 

(2.1) 
1 

'if = 'if,, + V ( T )  = =[P - eA(r)]'+ V ( T )  

where A(r) is the vector potential of a strong, uniform magnetic field, B ,  normal to 
the layer and V ( r )  is a Gaussian white-noise distributed random potential satisfying 

v ( t . ) = O  
V(r)V(T' )  = 2?r/:X6(r - T')  (2.2) 

where the cyclotron length is /, = and X(B) is a measure of the disorder 
which is linear in the magnetic field. Motion of electrons perpendicular to the layer 
is assumed to be frozen out [ZO] so that the wavefunctions of all relevant electronic 
states have the form 

@JT,z )  = (rlo)f(r) (2.3) 

where f (2) is a k e d  function, characteristic of the zDEG. In second quantized notation 
the Hamiltonian of the zDEG is then 

He = c,clc, (2.4) 
OI 

where a labels the eigenstate of (2.1). 
The Hamiltonian for the bulk phonon gas is simply 

where & is a 3D wavevector with components (q, q,). The electron-phonon coupling 
is assumed to be via the usual bulk deformation potential leading to an interaction of 
the form 

K+ = K ? Q ) c ~ c ~ ( ~ , ( Q ) +  &-Q)) (2.6) 
% A 4  

where the matrix element for phonon emission/absorption has the form 

A,(&) is independent of the states of the zDEG (although it does contain aform factor 
to account for the perpendicular part of the electronic wavefunction) an explicit form 
relevant to a [loo] 2DEG in silicon will be given in section 7. The use of this form 
of interaction is an assumption, it is known that the presence of disorder does not 
modify the form of the electron-phonon coupling [&IO] hut  it is possible that the 



1282 K A Benedicl 

two-dimensional nature of the electronic system entails a more complex coupling to 
the hulk lattice modes: at the very least there is strong evidence [ll] that the value of 
the coupling constant relevant to ZD systems is markedly different to its value in bulk 
materials. The full Hamiltonian of the model thus has the form 

H = H e  +If++ HeS. (2.8) 

A possible major shortcoming of this model is the neglect of the screening of the 
deformation potential by the electron gas, this is known to be important in bulk 
systems if quantitative predictions are required, but the nature of the screening in 2D 
systems is contentious and as no pretence of quantiative prediction is made here, the 
screening is neglected. 

In all of the following it is wumed that the magnetic field is sufficiently strong 
that the Landau bands do not significantly overlap in energy, i.e. that 

Jj; < hw, (2.9) 

where wc = eB/m is the cyclotron frequency; this implies that the disorder does not 
significantly mix states from different Landau levels and hence that the Landau level 
index remains a good quantum number when the disorder is turned on. 

3. The phonon emission rate and distribution function 

At any instant the (mixed) quantum state of the system is described by a density 
matrix p(t )  [12], in the absence of the electron-phonon interaction this would have 
the form 

( 3 4  I_~ ~ ~, 
e-(Hc-pN)/Te ,-H+ITn -~ ~~~~~ ~ 

W I )  
P ( t )  = P o  = 

where ’I, and T, are the electron and lattice temperatures and p is the chemical 
potential of the zDEC. It is mathematically convenient to assume that the system was 
in the state described by po in the distant past and that the electron-phonon coupling 
was switched on adiabatically. Bansforming to the interaction representation for the 
second quantized operatom yields the following form for the von Neumann equation 

iWp(t)  = [ fL+(t ) ,  P(U : P(-w) =pa. (3.2) 

This can be formally integrated to give a power series in the interaction for p. The 
mean occupation number of phonon mode (s, Q) is 

v, (Q, t )  = n { p ( t ) n , ( Q ) )  (3.3) 

is the phonon number operator; hence the emission rate where n,(Q) = a.(Q)a,(Q) t 
is, to second order in the interaction 
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where (O(t)), = Tr{O(l)p,} .  The expectation value in (3.4) is taken with both 
systems separately in equilibrium and is straightforward, if tedious, to compute; it 
gives the following form for the emission rate 

Expression (3.5) is of course that which would be arrived at by the use of Fermi's 
golden rule assuming separate equilibria prior to each transition. 

The total power emitted per unit area of the 2DEG is 

using the form (2.7) for the matrix element gives 

(3.7) 

where @.(Q) = w,(Q)h,(Q)C(L,(Q);T,,T,) and the structure function of the zDEG 
is 

W , q )  = l(4eiq'rlfl)126(em - E @  - fiw,(Q))f(e,)(l- f ( c p ) )  (3.9) 
a.0 

where f ( E )  = {e(E-@)/T* + I)-' is the usual Fermi distribution. Taking the infinite 
volume limit gives 

(3.10) 

where 

PA&) = p,(Q,B,+) = *,(Q)r(w,(Q),d (3.11) 

from which we can define the experimentally relevant quantity, the phonon angular 
distribution function 

In terms of this we can write the total emitted power as 

(3.12) 

(3.13) 
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All of the information on the disordered electronic system is contained in the 
structure factor l'; if we assume that the 2DEG is homogeneous and that l' is a self- 
averaging quantity then, using the identity JdE6(E-er,) = 1 in the definition (3.9), 
gives the following expression 

WJ, q)  = / d E  f ( E  + b)(l- I (E))S(q;E,w)  (3.14) 

where the two particle spectral function [13] 

has been introduced, which is commonly used in the theory OF quantum transport. 

4. Phonon emission from a pure ZDEG 

In order to illustrate the above in an exactly solvable situation and to allow comparison 
with [4] the case of no disorder will be examined first. In all the following magnetic 
units will be used in which h = l ,  = wc = 1. In the Landau gauge the eigenstates of 
the single particle Hamiltonian 

have the form 

(r = (z,y)Jn,k) = ~,e '~Yx, (z  - k) (4.2) 

where 'Holn, k) = czln,k) with $, z (n+ 1/2) and x,(z) is the nth harmonic oscillator 
wavefunction. Expanding the trace in equation (3.14) in terms of these basis states 
gives 

where C"(r, T ' )  = Ck(r ln ,  k)(n,  IT') is the kernel of the projection operator onto the 
nth Landau level. The position space integrations can be performed to give 

where 

(4.4) 
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with LF an associated Laguerre polynomial [14]. Consequently the structure factor 
has the form 

1 ro(m> g)  = % C ~ ( W  - m) Cun,m(q2/2) f (4+m)( l  - f ( 4 ) .  (4.5) 
m n 

Bearing in mind that 191 = QsinO this gives 

clearly showing that only cyclotron phonons can be emitted. The form of equation 
(4.3) is worthy of comment, for each allowed transition it is the product of three 
factors: a density of initial states, a density of final states (bath of which are delta 
functions at the relevant Landau energies) and a q dependent matrix element, this 
form will be seen to recurr in the approximation used in the next section. 

5. Phonon emission in the decoupled approximation 

It is not possible to evaluate (3.14) exactly for a disordered system so some approx- 
imation must be made. The simplest approximation is to replace the two- particle 
average by a product of one-particle averages setting 

Sdec(g;E,w) = 2 dZr d2r' eiq'[p-r')(r16(E+ hw -7t)Iv') (r'16(E-Z)lr).  (5.1) 

The delta functions can be expressed in terms of the imaginary part of the resolvent 
operator (E  - X)-'close to the real E axis, hence the average of the matrix element 
can be expressed in terms of the one-particle Green function as follows 

(r16(E+hw-7t)Irf) = %-iy+[G(r,r';Etiq)-G(r,r';E-iq)]. 
However, the strong field limit and the translational and rotational invariance of the 
ensemble of random potentials imply that [15,16] 

(5.2) 
1 

m 

(5.3) 

where Cn is the kernel introduced in the previous section. The fact that Cn(r , r )  = 
1/2a implies, using the standard relation between G and the density of states [17] that 

(5.3') i - lim (g,(E + iq) - gn(E - iv)) = 2rp,(E) 2a ?-.U+ 

where p,(E) is the density of states in the nth Landau level. Thus it can be seen that 

Sdx(q;E,w) = x ( 2 r ) 2 p , ( E + w ) p , , ( E ) k  / d2 r  d2r' eiq*(r-r')C AT, r')Cn4T', 7) 

n,n' 

(5.4) 
1 

= - C(2a12pn+m(E +w)pn(E)un,m(q2/2). 
2' n,m 
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This clearly reduces to the pure case in the limit 2?rpn(E) -+ 6(E - e:) which eorre- 
sponds to  X + 0. Hence the structure function has the form 

1 
rdec(w, d = Z;; xu  n m  , ( qz )/ 2 / d E  f ( E + w ) ( l -  I(E))(z?r)zpn+m(E+~)p,(E). 

( 5 . 5 )  
n,m 

It is clear that the only effect of the disorder in this approximation is to broaden 
the energy spectrum of the electron gas, what has  been omitted are the correlations 
between the eigenfunctions of the initial and final states in the transition due to their 
being in the same random potential, it will turn out that this is only a serious omission 
(at least for the present case of disorder without long-range spatial correlations) when 
considering intra-Landau level processes. 

6.  Phonon emission in the self-consistent Born approximation 

The definition of the spectral function (3.14) shows that it is related to the usual 
two-particle Green functions, in fact i t  can be written as 

where 

K"+"(q;E,w) = d2r eiq"'(rI(E+w +iaO - ~ ) - ' I o ) ( ~ I ( E + i u ' O - ~ ) - ' I r ) ,  

(6 .2)  
J 

The self-consistent Born approximation for the one- and tw-particle Green functions 
can be expressed diagrammatically as in figure 1 or as 

G(r ,r ' ; z )  = Go(r , r ' ; z )  + 2?rX J d'r" Go(r,r";z)G(r",r";z)G(r",r';z) (6.3) 

and 

K""'(q;E,w) = K,D'"'(q; E,w) + Z ? r ~ I ( ~ ' ( p ; E , w ) K ' , O ' ( q ; E , w )  

where 

is the Green function for the pure 2DEG and 

. .. 
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,,---, 
\ 

- = - +  

Figure 1. The diagrammatic f o r m  of the Dyson and BetheSalpeter equations 
defining the SCBA. 

(hence using KO instead of the full SCBA form gives the decoupled approximation). 
Using relation (5.3) in the Dyson equation (6 .3)  reduces the latter to a simple 

quadratic equation for g,(t), the solution of which gives the density of states p , (E)  = 
p(E - E:)  where 

The use of this approximation gives, on setting E = E: +6c for some n and w = m+6w 
for some m, 

(6.8) 
U (1 - "2 )P(6€ + 6w)p(6r) S(q; E: + &, m + 6w) = - 

2~ (1 - u2)' - (u/X)[&(6< + &)(I - t ~ ) ~  - u(6w)'I 

where U = U,,,(q2/2). It is not hard to show that this has the correct hydrodynamic 
limit (m = 0 ; 6 w , q  -+ 0)  of 

which is characteristic of diffusive motion [IS] with the diffusion constant D ( E )  = 
4r2X(n + 1 /2 )p (E) .  It is also clear that if U is small (e.g. when q + CO) then this 
reduces to the result of the decoupled approximation. 

7. Results for [loo] silicon 

In this section results for the phonon distribution function and the total emitted power 
will be presented for the case of emission from a ZDEG formed at a [loo] inversion 
layer in a silicon device. The isotropic Debye approximation is used for the phonon 
dispersion relation (only acoustic modes are considered), i.e. 

us(&) = U , &  (7.1) 
with uLA = 9 x 10% s-l and vTA = 5.4 x 103m s - l .  The phonon polarization vectors 
P'(Q) are chosen so that PLA(Q)  = Q / Q  while the two TA modes are, respectively, 
in and perpendicular to the plane formed by Q and the normal to the 2DEG. The 
detailed form of the electron-phonon matrix element is taken to be [4,19] 



1288 K A Benedici  

Angle to nom01 !3 - RI 
Angle t o  normal e - 

Figure 2. The angular discribtition function W(B) for ( a )  TA and (6 )  LA phonons 
at B = 5 T, fi = hwc and b T a  = ihw,. 

The perpendicular part of the wavefunction is taken to have the standard variational 
form [20] 

(7.3) 
f ( r )  = (2a 3 ) -112 re -z/20 

Hence, in the notation used in section 2 

2 where K , , ~  = (cos2B - D) , lcTAl = cos2BsinZB and tcTAZ = 0. The form factor for the 
thickness of the zDEG is Z(qz) = (1 t The parameters used in the results 
to be shown were: D = -2/3, a = lnm (width of the ZDEG) and m* = 0.19me, 
the absolute value of the emission rate is in consistent but rather arbitrary units (in 
fact they are W m-a sr-' assuming that the deformation constant has its bulk value 
of Z = 9 eV) comparison with experiment would proceed by normalizing W,(B) with 
respect to the measured peak value. In using the decoupled approximation the density 
of states function was  chosen to he the elliptical band of the SCBA (equation (6.5)). 
All of the results shown correspond to a field of 5 T with the disorder parameter, 
A ,  set such that the width of the disorder broadened Landau levels was  one half of 
the cyclotron energy and the lattice temperature w a s  set to zero. In each figure 
the full line is the result with no disorder, the dotted line gives the result of the 
decoupled approximation and the broken line is the SCBA result. Figure 2 shows the 
angular distribution of phonon emission in the three different approximations in the 
case where the chemical potential is placed half way between the n = 0 and n = 1 
Landau levels a t  an electron temperature such that kT, is one half of the cyclotron 
energy (approximately 17 K). Figure 3 shows the distributions for the case where the 
chemical potential is placed at the centre of the n = 0 Landau band at a temperature 
corresponding to one eighth of the cyclotron energy (T, = 4.4 K). Figures 4 and 5 
show the total emitted power as afunction of electron temperature for the two choices 
of value of the chemical potential, while figures 6 and 7 show the variation of the 
total emitted power with chemical potential a t  the two values of electron temperature 
discussed above. 
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I) 
Angle to normal 8 - 

Figure 3. The angular distribution function W ( 0 )  for (i) TA and (ii)  LA phonons 
at B = 5 T. r, = i hw ,  and keT. = ihw,. 

Electron tempemture T, ( K l  
15 

Electron temperature T, I K l -  

Figure 4. The total power emitted into TA 
modes ag a function of electron temperature at 
B = 5 T and r, = fiwc. 

Figure 5. The to ld  power emitted into TA 
modes as a funclion of electron temperature at 
B = 5  Tandr, = $ 8 ~ ~ .  

It is clear from these results that  at  higher temperatures where inter-Landau level 
transitions dominate the inclusion of disorder causes only quantitative modifications in 
the emission distribution, broadening it slightly, and that the difference in the results 
of the SCBA and the decoupled approximation are small: hence for most purposes 
at  these higher temperatures the use of the decoupled approximation, with perhaps 
a more realistic choice of density of states function, will be sufficient. At the lower 
temperatures the intra-Landau level transitions will dominate, particularly when the 
Fermi level is within a Landau band, since these processes are forbidden in the absence 
of disorder, its inclusion makes a qualitative difference. Further, since the matrix 
element approaches 1 for some vaIues of q when m = 0, the difference between the 
SCBA and the decoupled approximation is not negligible, hence in these circumstances 
the use of the results of section 6 will be required. It is possible that the structure in 
figure 7 could be used as the basis of a method using phonon emission to measure the 
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z a 
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t e w 

1 
Chemical potent inl  plbwG- Chemical potentinl pthw, - 

Figure 6. The total power emitted into TA 
modes as a function of chemical potential at 
B = 5 T and b T e  = $hwc.  

Figure 7. The total power emitted inlo TA 
modes as a function of chemical p a i d i d  at 
B = 5 T and keT. = ihw , .  

density of states of a Landau band. The results for the total emission show that the 
decoupled approximation consistently overestimates the emitted power relative to the 
SCBA, this can be viewed as a reduction in the effective electron-phonon coupling due 
to the non-trivial correlations between the diffusive electronic states. 

8.  Summary 

The distribution of emitted phonons from a heated disordered 2DEG in a strong mag- 
netic field has been calculated using standard approximation techniques from the 
theory of disordered systems, it has been shown that at higher temperatures where 
inter-Landau level processes dominate a simple approximation using a suitable form 
for the density of states is sufficient while at lower temperatures where intra-Landau 
level processes dominate a more sophisticated treatment is needed. 
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